
IJSER

International Journal of Scientific & Engineering Research, Volume 14, Issue 10, October-2023
ISSN 2229-5518

IJSER © 2023
http://www.ijser.org

Setting Up Apple M Series Macbooks to Work
with OpenCV and Java

Susmit Sarkar

Abstract— Apple Macbooks are now enabled with Apple M1 or M2 processors, and because of the architectural differences, existing
libraries like OpenCV are not quite easy to use with Java on Apple M1 or M2-powered Macbooks. This paper takes an investigative
approach to figure out those potential issues and comes back with a potential solution. This follows an approach of making OpenCV Jar
locally before importing and using it in IDEs.

Index Terms— Setting up Apple M1 Macbook, OpenCV with Java, M1 Macbook with OpenCV and Java, OpenCV Java Set up on M2
Macbooks

——————————  ——————————

1 INTRODUCTION
penCV is an open-source computer vision library
published by Intel under the Apache 2 licence, mainly for
the purpose of real-time computer vision. It was

developed in 2006 using C++, but most of the major
development work was carried out in 2009. And since then,
mostly minor releases have been done, and OpenCV hasn’t
considered including much of the machine learning features.
In 2020, OpenCV announced a kickstarter campaign for the
OpenCV AI Kit, a series of hardware modules and additions
to OpenCV supporting spatial AI.

Though the library was initially developed using C, most of its
newer developments and algorithms are now developed using
C++. But it provides language binding in multiple other
languages, including Java.

It is designed in such a way that if the library finds Intel’s
Integrated Performance Premitives on the system, it will use
these proprietory-optimised routines to accelerate itself. A
Compute Unified Device Architecture (CUDA)-based graphics
processing unit (GPU) interface has been in progress since
2010, and there have been a few major milestones achieved.

Macbooks used to use Intel’s x86 processors, and hence
OpenCV used to be integrated well with those processors.
Apple started using ARM-based M1 and M2 chips for its
newer Macbooks. Though it runs x86-based applications as
well using Rosetta (which could cause adverse effects on
performance when running x86 applications), fortunately, due
to its speed, the M1 still outperforms older Intel chips in most
scenarios, even with legacy x86 apps.

OpenCV is one of those products impacted by this but
fortunately this paper describes a way to bypass this until a
more viable solution is being put into place.

2 ISSUES RUNNING OPENCV ON M MACBOOKS
2.1 How ARM is different to x86
Apple Macbooks started using it’s proprietory M1 and M2
chips instead of using Intel produced microprocessors. This
uses ARM architecture. ARM is a family of RISC instruction

set architecture for computers. Intel used to produce 32-bit
microprocessors (successors of 16-bit 8086 microprocessor)
and mostly they were used by Apple, Microsoft and other
providers on laptops and computers.

ARM uses Reduced Instruction Set Computing (RISC), while
x86 uses Complex Instruction Set Computing (CISC).

RISC has a far fewer instructions than CISC, and each basic
instruction is executed in a single clock cycle. CISC's
instructions can be pretty complex and perform multiple tasks
in a single instruction. CISC's complex instruction set makes
x86 chips harder to design because the chip has to be able to
account for the complex instructions, making x86 chips
typically more expensive.

But x86 applications can’t directly run on ARM as x86 uses
CISC instruction set. Developers at Apple designed Rosetta 2
that allows older x86 applications to run on newer M Series
chips.

x86 processors typically operate independently of peripheral
components like RAM and GPUs. But ARM microprocessors
were designed to package these additional components into a
combined central unit. That's why ARM processors operate as
part of a System on Chip (SOC).

2.2 Why OpenCV won’t work directly
OpenCV focuses on real time image processing, video capture
and analysis. To serve this OpenCV libraries need to interact
with CPUs and GPUs through complex instruction sets. x86
used to accept those instructions and process easily. But this
will be a bit difficult to be processed by ARM as it will need
reduced set of intructions.

So, unless these compiler instructions can be emulated for
RISC system, OpenCV can’t directly work on Apple M Series
Macbooks.

OpenCV is yet to publish an official one click downloadable
build to support this.

O

http://www.ijser.org

IJSER

International Journal of Scientific & Engineering Research, Volume 14, Issue 10, October-2023
ISSN 2229-5518
2023

IJSER © 2023
http://www.ijser.org

3 SYSTEM SPECIFICATIONS
M1 Series Apple Macbook Air was used for this alongside
some other packages those were brewed to specific versions
(Details provided in Section 4). IntelliJ IDEA 2023.1.1 was used
for demonsration purpose. This demonstration will use
OpenCV 4.5.0 but the similar set up should work for other
versions as well. With IntelliJIDEA Amazon Corretto 21.0.1
distribution of JDK was used for demonstration purpose but it
can be any distribution that supports arm64.

4 SETTING UP M SERIES MACBOOK FOR OPENCV
4.1 Setting up FFMPEG4
FFmpeg is an open-source software that internally gets used
by OpenCv to handle video, audio and other multi-media
formats. OpenCV is compatible with FFmpeg 4 and below at
the moment. It is vital to check if the Macbook is having any
higher versions installed and those needs to be uninstalled
before installing FFmpeg 4.

4.2 Install Support Tools
The approach here will be to use a compiler independent
method to build, test and package the OpenCV for M series
macbooks ideally in form of a JAR file. CMake will be used
here to exactly do that. It’s not a build system itself but it
generates another system’s build files. It is usually used in
conjuction with native build libraries like Make or XCode.

Apache Ant on the other hand is a Java based build tool
similar to Make that will also be used to build the library for
Java.

Also, AdoptOpenJDK will be needed to be installed for Java
support. Also, it’s crucial that $JAVA_HOME is set at this
point as that will be needed during CMake is used.

4.3 Download OpenCV
Any source control system can be used to download the
project but here wget has been used. The project is
downloaded and unzipped in a directory. Alongside this
method, the project can also be downloaded using git or other
version control tools. Here 4.5.0 has been used as a reference
but any future versions should follow same process.

4.4 Building the project with Java option
In this step, finally CMake can be used to make the build from
downloaded repository. System Processor and OSX
Architecture levels need to be set up as “arm64” for M series
Macbooks. It is also crucial to use “amd64” version of Java
AWT Library and “arm” version of JVM Library.

Finally, BUILD_opencv_java flag should be “ON” in terms of
making sure that it generated JAR file and Java library.

In an ideal scenario, this make should not shout any errors. In
case of errors, it’s ideal to make sure that the right version of
JDK is installed and $JAVA_HOME is set up correctly.

Make is a build automation tool that builds executable
programs and libraries from source code by reading files
called makefiles which specify how to derive the target
program. This will be used to make the executables at this
point.

4.5 Installing the build
If this build is successful without any errors, installation can
be kick started at this point.

Based on the architecture type, this might need to be installed

brew install FFMPEG@4
brew link FFMPEG@4

xcode-select --install
brew install adoptopenjdk
brew install cmake
brew install ant

brew install wget
wget -O opencv.zip
https://github.com/opencv/opencv/archive/4.5.0.zip
unzip opencv.zip

cmake -DCMAKE_SYSTEM_PROCESSOR=arm64 \
-DCMAKE_OSX_ARCHITECTURES=arm64 \
-DWITH_OPENJPEG=OFF \
-DWITH_IPP=OFF \
-D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local/opencv \
-D JAVA_INCLUDE_PATH=$JAVA_HOME/include \
-D

JAVA_AWT_LIBRARY=$JAVA_HOME/jre/lib/amd64/liba
wt.so \

-D
JAVA_JVM_LIBRARY=$JAVA_HOME/jre/lib/arm/server/li
bjvm.so \

-D BUILD_opencv_python2=OFF \
-D BUILD_opencv_java=ON \
-D INSTALL_PYTHON_EXAMPLES=OFF \
-D INSTALL_C_EXAMPLES=OFF \
-D OPENCV_ENABLE_NONFREE=OFF \
-D BUILD_EXAMPLES=ON ..

make -j8

sudo arch -x86_64 make install

cd opencv-4.5.0
mkdir build && cd build

http://www.ijser.org

IJSER

International Journal of Scientific & Engineering Research, Volume 14, Issue 10, October-2023
ISSN 2229-5518
2023

IJSER © 2023
http://www.ijser.org

differently.

5 TESTING THE SUCCESS
5.1 Checking files

As on Section 4.4, CMAKE_INSTALL_PREFIX was defined
and ideally this is where inside “../share/java/opencv4” the
Jar file and the native library will be placed. If these files are
there, mostly the install was successful.

5.2 Setting up IntelliJ IDEA

A Maven project can be created to run a basic set up check.
The POM file should be having the dependancy added:

The generated OpenCV JAR and library should be added to
the project library from the “Module Settings”. 2 files should
be added in “Libraries” option:

1. opencv-450.jar

2. libopencv_java450.dylib

These file names could different based on the targetted
OpenCV version.

5.3 Setting up IDE level Java distribution

The project should be using the right Java distribution and
version to match the arm64 architecture. This was tested with
Amazon Corretto Version 21.0.1. Java distribution can be
changed in IntelliJ from the “Module Settings” as well from
“Modules” option.

5.4 Writing basic Java code to check the set up
A basic Java class can be created to check if the targetted JAR
has been built in the right way.

As this is having a main class, this can be executed straight
away from the IntelliJ IDEA. The outcome should shout the
right OpenCV version like this:

6 CONCLUSION

As Apple M Series Macbooks are quite new into the market, it
will take some time of developers to realign their applications
so that they can be seamlessly used in those Macbooks. Error
messages are not very evidential at the moment because of the
maturity of M series macs. But certain technical
implementations like this will help developers work with
OpenCV until a more viable and stable solution hits the
market.

REFERENCES
[1] OpenCV.org - Official website of OpenCV
[2] Pulli, Kari; Baksheev, Anatoly; Kornyakov, Kirill; Eruhimov, Victor.

"Realtime Computer Vision with OpenCV".
[3] Adrian Kaehler; Gary Bradski. Learning OpenCV 3: Computer Vision

in C++ with the OpenCV Library. O'Reilly Media. ISBN 978-1-4919-
3800-3.

[4] Hajdarbegović, Nermin. “Apple M1 Processor Overview and
Compatibility”

[5] Reidt, Teresa. “ARM vs. x86: Differences & similarities of both
architectures”

sudo make install

<dependency>
<groupId>org.openpnp</groupId>
<artifactId>opencv</artifactId>
<version>3.4.2-0</version>
</dependency>

package com.susmit.opencv;
import org.opencv.core.Core;
public classMainLibrary {
public static voidmain(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
System.out.println("Loaded OpenCV version "+

Core.VERSION);
}

}

Loaded OpenCV version 4.5.0

Process finished with exit code 0

http://www.ijser.org

	1INTRODUCTION
	2 ISSUES RUNNING OPENCV ON M MACBOOKS
	2.1 How ARM is different to x86
	2.2 Why OpenCV won’t work directly

	3SYSTEM SPECIFICATIONS
	4SETTING UP M SERIES MACBOOK FOR OPENCV
	4.1Setting up FFMPEG4
	4.2Install Support Tools
	4.3Download OpenCV
	4.4Building the project with Java option

	In an ideal scenario, this make should not shout a
	Make is a build automation tool that builds execut
	4.5Installing the build

	5 TESTING THE SUCCESS
	5.1 Checking files
	As on Section 4.4, CMAKE_INSTALL_PREFIX was define
	5.2 Setting up IntelliJ IDEA
	A Maven project can be created to run a basic set
	The generated OpenCV JAR and library should be ad
	2.libopencv_java450.dylibThese file names could di
	5.3 Setting up IDE level Java distribution
	The project should be using the right Java distrib
	5.4 Writing basic Java code to check the set up

	6 CONCLUSION
	As Apple M Series Macbooks are quite new into the
	REFERENCES

